
Heuristic Evaluation

Andrea Lee
Team 6: Code Critters



Design
The Code Critiquer has a simple tool to help users find “antipatterns” common

mistakes and poor habits made by novices. The user interface for the Code Critiquer
includes a window containing a program provided by the user with a number assigned
for each line of code. In addition to manually typing code, users are able to upload
program files into the application. If the user creates an account and signs into the
application, they will be able to view past critiques saved by the app itself. Critiques can
also be downloaded.

UI Domain
The Code Critiquer is a web application, a program meant to be accessible

through an internet browser rather than being downloaded separately. This means that
it must be compatible with a variety of different browsers and operating systems. It
should have the same formatting regardless of what system it is being used on. As it
also has a “login” function, there must be a clear distinction between when a user is
logged in or logged out.

This web application is also meant to be a programming tool. Lines of code are
generally assigned specific numbers with any reference to these lines of code using
these numbers. The majority of the application space should be dedicated to the code
provided by the user.

Principles
This evaluation will be using a slightly modified version of Norman’s 10 Usability
Heuristics.

1. Visibility of status – Users should know the effects of their actions.
2. Understandability of system status – If the different states of the system are

visible, the user must also be able to distinguish them
3. User control – Users should be allowed to alter certain parameters to better

achieve their goals
4. Control consistency – Each of the system's controls should function in

predictable ways.
5. Prevent errors – The system should include failsafes to prevent users from

making mistakes before they happen.
6. Recognizability – The user should be able to navigate the interface based on

terms they should already be familiar with.
7. Efficiency – The users should be able to reach their intended goals in the

simplest manner possible.
8. Aesthetics – No unnecessary information should be present.
9. Error recovery – If an error cannot be prevented, a user should have the

opportunity to discover and correct it on their own.



10.Documentation – Information about the system's functions should be available to
users.

Problems
The command for running the code is labeled “Check for Antipatterns”. There is

no guarantee that all users will know what antipatterns are. This omission violates the
“recognizability” and “documentation” heuristics. This command should either be
rephrased or a description of antipatterns should be available somewhere within the
app.

At the end of the example antipattern text, a number is given at the end. There is
no information available anywhere on the app to notify users what this number means,
violating the “recognisability”, “documentation” and “understandability of system status”.
Users should be given some method of learning what these numbers mean.

The window for selecting files to upload contains a blank space above the file
name field and upload button. Removing or filling this space would improve the
“efficiency” and “aesthetics” heuristics.

Critical Concerns
While there is a clear distinction between the states of a logged in user and a

guest, there is no distinction between what programming language is currently being
used by the application. There is also no clear way to select the programming language
either This violates the “visibility of status” and “user control” heuristics. Different
languages will have different antipatterns and a mistake in one language can be
standard practice in another.

For example, while semicolons are necessary to mark the end of every line in the
C and Java programming languages, they are optional in the Python programming
language. If Jane Doe manually types a Java program while the system is checking for
Python antipatterns, the system will not detect a missing semicolon that would prevent
the program from running properly.

Rather than saving past work with the name of the file itself, the code critiquer
appears to only use the date and time it was uploaded. Therefore, if a user wishes to
view a specific program's critiques, they will need to remember the exact date and time
it was uploaded. As the user continues to use the code critiquer, this problem will only
worsen. There is not an efficient way for the user to search through past critiques to find
a specific program.

An example of this design working against the user would be after a semester of
using the program, Jane Doe wants to look though the specific critiques for a specific



program that will be relevant for an upcoming exam. However, while she remembers the
name of the program, she does not remember the exact date or time of the version she
is looking for. To find this critique, she may need to look through every saved critique
until she finds the one she needs. Program names should be given when browsing past
critiques.


